viernes, 30 de abril de 2010

piramides troficas

Pirámides tróficas

La pirámide trófica es una forma especialmente abstracta de describir la circulación de energía en la biocenosis y la composición de ésta. Se basa en la representación desigual de los distintos niveles tróficos en la comunidad biológica, porque siempre es más la energía movilizada y la biomasa producida por unidad de tiempo, cuanto más bajo es el nivel trófico.



También se suele manifestar este fenómeno indirectamente cuando se censan o recuentan los individuos de cada nivel, pero aquí las excepciones son más frecuentes y tienen que ver con las grandes diferencias de tamaño entre los organismos y con los distintos tiempos de generación, dando lugar a pirámides invertidas. Así en algunos ecosistemas los miembros de un nivel trófico pueden ser mucho más voluminosos y/o de ciclo vital más largo que los que dependen de ellos. Es el caso que observamos por ejemplo en muchas selvas ecuatoriales donde los productores primarios son grandes árboles y los principales fitófagos son hormigas; en un caso así el número más pequeño lo presenta el nivel trófico más bajo. También se invierte la pirámide de efectivos cuando las biomasas de los miembros consecutivos son semejantes, pero el tiempo de generación es mucho más breve en el nivel trófico inferior; un caso así puede darse en ecosistemas acuáticos donde los productores primarios son cianobacterias o nanoprotistas.

También podemos encontrar la relación de la energía y los niveles troficos:
En esta sucesión de etapas en las que un organismo se alimenta y es devorado, la energía fluye desde un nivel trófico a otro. Las plantas verdes u otros organismos que realizan la fotosíntesis utilizan la energía solar para elaborar hidratos de carbono para sus propias necesidades. La mayor parte de esta energía química se procesa en el metabolismo y se pierde en forma de calor en la respiración. Las plantas convierten la energía restante en biomasa, sobre el suelo como tejido leñoso y herbáceo y bajo éste como raíces. Por último, este material, que es energía almacenada, se transfiere al segundo nivel trófico que comprende los herbívoros que pastan, los descomponedores y los que se alimentan de detritos. Si bien, la mayor parte de la energía asimilada en el segundo nivel trófico se pierde de nuevo en forma de calor en la respiración, una porción se convierte en biomasa. En cada nivel trófico los organismos convierten menos energía en biomasa que la que reciben. Por lo tanto, cuantos más pasos se produzcan entre el productor y el consumidor final, la energía que queda disponible es menor. Rara vez existen más de cuatro eslabones, o cinco niveles, en una red trófica. Con el tiempo, toda la energía que fluye a través de los niveles tróficos se pierde en forma de calor. El proceso por medio del cual la energía pierde su capacidad de generar trabajo útil se denomina entropía.
Cadenas y Redes Alimenticias
Una cadena alimenticia es la ruta del alimento desde un consumidor final dado hasta el productor. Por ejemplo, una cadena alimenticia típica en un ecosistema de campo pudiera ser:

pasto ---> saltamonte --> ratón ---> culebra ---> halcón
Aún cuando se dijo que la cadena alimenticia es del consumidor final al productor, se acostumbra representar al productor a la izquierda (o abajo) y al consumidor final a la derecha (o arriba). Ud. debe ser capaz de analizar la anterior cadena alimenticia e identificar los autótrofos y los heterótrofos, y clasificarlos como herbívoro, carnívoro, etc. Igualmente, debe reconocer que el halcón es un consumidor cuaternario.
Desde luego, el mundo real es mucho más complicado que una simple cadena alimenticia. Aún cuando muchos organismos tienen dietas muy especializadas (como es el caso de los osos hormigueros), en la mayoría no sucede así. Los halcónes no limitan sus dietas a culebras, las culebras comen otras cosas aparte de ratones, los ratones comen yerbas además de saltamontes, etc. Una representación más realista de quien come a quien se llama red alimenticia, como se muestra a continuación:

Solamente cuando vemos una representación de una red alimenticia como la anterior, es que la definición dada arriba de cadena alimenticia tiene sentido. Podemos ver que una red alimenticia consiste de cadenas alimenticias interrelacionadas, y la única manera de desenredar las cadenas es de seguir el curso de una cadena hacia atrás hasta llegar a la fuente.
La red alimenticia anterior consiste de cadenas alimenticias de pastoreo ya que en la base se encuentran productores que son consumidos por herbívoros. Aún cuando este tipo de cadenas es importante, en la naturaleza son más comunes las cadenas alimenticias con base en los detritos en las cuales se encuentran descomponedores en la base.
Pirámides


Un concepto muy importante es el de biomasa. Un principio general es que, mientras más alejado esté un nivel trófico de su fuente (detrito o productor), menos biomasa contendrá (aquí entendemos por biomasa al peso combinado de todos los organismos en el nivel trófico). Esta reducción en la biomasa se debe a varias razones:
No todos los organismos en los niveles inferiores son comidos .

No todo lo que es comido es digerido .
Siempre se pierde energía en forma de calor.

Es importante recordar que es más fácil detectar la disminución en el número si lo vemos en términos de biomasa. No es confiable el número de organismos en este caso debido a la gran variación en la biomasa de organismos individuales. Por ejemplo, algunos animales pequeños se alimentan de los frutos de árboles. En términos de peso combinado, los árboles de un bosque superan a los animales pero, de hecho, hay más individuos de los animales que de los árboles; ahora bien, un árbol individual puede ser muy grande, con un peso de cientos de kilos, mientras que un animal individual (en el caso que estamos analizando) puede pesar, quizás, un kilo.
Hay unas pocas excepciones al esquema de pirámide de biomasa. Una de ellas se encuentra en sistemas acuáticos donde las algas pueden ser superadas, en número y en masa, por los organismos que se alimentan de las algas. Las algas pueden soportar la mayor biomasa del siguiente nivel trófico solamente porque ellas pueden reproducirse tan rapidamente como son comidas. De esta manera, ellas nunca son completamente consumidas. Es interesante notar que esta excepción a la regla de la pirámide de biomasa también es una excepción parcial a por lo menos 2 de las 3 razones para la pirámide de biomasa dadas arriba. Aunque no todas las algas son consumidas, sí lo son la mayoría de ellas, y aunque no son totalmente digeribles, las algas son, en términos generales, mucho más nutritivas que las plantas leñosas (la mayoría de los organismos no pueden digerir la madera y extraer energía
de ella).


Magnificación Biológica
La magnificación biológica es la tendencia de los contaminantes a concentrarse en niveles tróficos sucesivos. Con mucha frecuencia, esto va en detrimento de los organismos en los cuales se concentran estos materiales ya que casi siempre las sustancias contaminantes son tóxicas.
La biomagnificación sucede cuando los organismos en la base de la cadena alimenticia concentran el material por encima de su concentración en el suelo o agua que los rodea. Como vimos antes, los productores toman los nutrientes inorgánicos de su ambiente. Ya que una deficiencia de estos nutrientes puede limitar el crecimiento del productor, los productores harán el mayor esfuerzo para obtener los nutrientes; con frecuencia, gastan considerable energía para incorporarlos en sus cuerpos y, aún incorporar más de lo necesario en el momento y lo almacenan. El problema se presenta cuando un producto contaminante, como el DDT o mercurio, se presenta en el ambiente. Estos contaminantes se asemejan, químicamente, a nutrientes inorgánicos esenciales por lo que son incorporados y almacenados "por error". Este es el primer paso en la biomagnificación; el contaminante se encuentra a una concentración mayor dentro del productor que en el ambiente.
La segunda etapa de la biomagnificación sucede cuando es comido el productor. En nuestra discusión sobre la pirámide de biomasa vimos que relativamente poca energía pasa de un nivel trófico al siguiente. Esto significa que un consumidor (de cualquier nivel) tiene que consumir mucha biomasa del nivel trófico inferior. Si esa biomasa contiene el contaminante, éste será consumido en grandes cantidades por el consumidor. Los contaminantes que se biomagnifican tienen otra característica: no solamente son adquiridos por los productores sino que, también son absorbidos y almacenados en los cuerpos de los consumidores. Esto sucede con frecuencia con contaminantes solubles en grasas como el DDT o los PCB. Estos materiales son adquiridos a través de los productores y se mueven a la grasa de los consumidores. Si el consumidor es capturado y comido, su grasa es digerida y el contaminante se traslada a la grasa del nuevo consumidor. De esta manera, aumenta la concentración del contaminante en los tejidos grasos de los consumidores. Usualmente los contaminantes solubles en agua no puede biomagnificarse de esta manera debido a que se disuelven en los fluidos corporales del consumidor. Ya que todos los organismos pierden agua al ambiente, los contaminantes se pierden junto con el agua. Pero, la grasa no se pierde.
El "mejor" ejemplo de biomagnificación es la del DDT. Este pesticida (insecticida) de larga duración permitió mejorías en la salud humana en muchos países por eliminación de insectos como los mosquitos que transmiten enfermedades. El DDT es efectivo debido a que no se descompone en el ambiente; es tomado por los organismos del ambiente e incorporado en su grasa. En muchos organismos (incluyendo humanos), no hace un daño real pero, sin embargo, en otros el DDT es letal o puede tener efectos a largo plazo más incidiosos. Por ejemplo, en las aves el DDT interfiere con el depósito de calcio en las cáscaras de los huevos. Los huevos puestos son muy suaves y se rompen fácilmente; las aves afectadas de esta manera no son capaces de reproducirse y esto causa una reducción en el número de ellas. Estos casos eran tan claros en 1960 que llevaron a la científica Rachel Carson a postular una "primavera silenciosa" sin el canto de las aves. Su libro "Silent Spring" condujo a la prohibición del DDT, la búsqueda de pesticidas que no biomagnifiquen, y el nacimiento del movimiento ambiental "moderno". Luego de esta prohibición, algunas aves como el águila calva de Estados Unidos, ha podido recuperarse. Irónicamente, muchos de los pesticidas que reemplazaron al DDT son más peligrosos para los humanos.
Resumen:
Para que haya biomagnificación de un contaminante, deben darse las siguientes condiciones:
El contaminante debe tener una larga vida.
El contaminante debe ser concentrado por los productores.
El contaminante debe ser soluble en grasa.

Cadenas Alimenticias Humanas vs. Naturales
La civilización humana depende de la agricultura. Solamente con la agricultura podrían unas pocas personas alimentar al resto de la población; el resto de la población que no tiene que producir alimentos puede entonces dedicarse a hacer todas las cosas que asociamos con "civilización". Agricultura significa manipular el ambiente para favorecer las especies de plantas que comemos. En esencia, los humanos manipulamos la competencia, permitiendo que prosperen las especies favorecidas (cultivos) y reprimiendo aquellas especies que podrían competir con ellas (malezas). Es decir, con la agricultura estamos creando un ecosistema muy simple; como mucho, solamente tiene tres niveles - productores (cultivos), consumidores primarios (ganado, humanos) y consumidores secundarios (humanos). Con esto, poca energía se pierde antes de llegar a los humanos ya que hay muy pocos niveles tróficos.
Esto es bueno para los humanos pero, ¿qué tipo de "ecosistema" hemos creado? Los ecosistemas agrícolas tienen varios problemas. En primer lugar, creamos monocultivos (campos con un solo cultivo); esto hace más fácil sembrar, desyerbar, y cosechar, pero también coloca muchas plantas similares en un área pequeña, creando una situación ideal para las enfermedades y las plagas de insectos. En los ecosistemas naturales, las plantas de una especie están, con frecuencia, esparcidas. Los insectos, que comúnmente se especializan en alimentarse de una especie vegetal en particular, tienen problemas en encontrar las plantas esparcidas. Sin alimento, las poblaciones de insectos se mantienen a raya. Ahora bien, en un campo de maíz, aún el insecto más inepto puede encontrar una nueva planta con un simple salto. Igualmente, las enfermedades se diseminan más fácilmente si las plantas están próximas. Es necesario usar muchos productos químicos (pesticidas) para mantener el monocultivo.
Otro problema con la agricultura humana es que dependemos de relativamente pocas especies vegetales alimenticias. Si en un año fallan, a nivel mundial, los cultivos de maíz y arroz, nos veríamos en apuros para alimentar a todo el mundo (aunque hay que reconocer que tampoco estamos haciendo un buen trabajo ahora). Los ecosistemas naturales usualmente tienen fuentes alternativas de alimento en caso de que una fuente falte.
Finalmente, un problema asociado con los agroecosistemas es el problema del reciclaje de los nutrientes inorgánicos. En un ecosistema natural, cuando una planta muere cae al suelo y se descompone, y sus nutrientes inorgánicos son regresados al suelo del que fueron tomados. En agricultura, sin embargo, cosechamos el cultivo, llevamos lejos la cosecha y, al final, los eliminamos por los sistemas sanitarios siendo arrastrados por los ríos hacia el océano. Aparte del problema de contaminación del agua que esto crea, es obvio que los nutrientes no son regresados a los campos. Ellos tienen que ser repuestos por medio de fertilizantes químicos, lo que significa minería, transportación, electricidad, etc., sin olvidar que los fertilizantes químicos tienden a disolverse y contaminar, aún más, las aguas.
Se dispone de algunas soluciones a estos problemas pero, al mismo tiempo, ellas crean nuevos problemas. La agricultura de labranza cero usa herbicidas para eliminar las malezas; entonces se siembra el cultivo a través de las plantas muertas sin labrar el suelo. Esto reduce la erosión del suelo pero los mismos herbicidas puede dañar los ecosistemas. En muchas áreas se ha usado las aguas servidas de ciudades para que sirvan de fertilizantes. Esto reduce las necesidades de fertilizantes químicos pero requiere de demasiado energía para transportar el material. Además, si no se tiene cuidados, productos como químicos para el hogar y metales pesados pueden contaminar esos productos que se biomagnificarían en los cultivos que luego nos comeríamos.

ESTA INFORMACIÓN FUE SUBIDA POR SU COMPAÑERA VALERIA VARELA, ESPERO QUE LE SEA DE GRAN UTILIDAD

12 comentarios:

  1. Que tal compañera buen día pues tu información es pura letra y mas letras créeme aburre no tiene imágenes nada no es atractiva, mejórala sin mas me despido, atte. Candido Cueto R.

    ResponderEliminar
  2. hola compañera tu información esta bien pero te hace falta mas imágenes darle mas vida a tu blog para que lusca interesante y llame la atención delos visitantes bueno me despido su compañera Yaretdi Monserrat Aguilar Perez del 4º C

    ResponderEliminar
  3. HOLA COMPAÑERA TU INFORMACION ES BUENA PERO AÑADE MAS IMAGENES PARA QUE TU INFORMACION SE VEA BIEN ESPERO Y TOMES EN CUENTA MI COMENTARIO ATTE:DIANA IVETH HERNANDEZ MATEOS IV"C".

    ResponderEliminar
  4. hola compañero tu información esta bien pero te hace falta mas imágenes para que llame la atención de los lectores y no se aburran al momento de estar leyendo bueno me despido Cristian Giovanni Huerta Torralba

    ResponderEliminar
  5. HOLA COMPAÑERO SOLO ME QUEDA DECIRLES QUE SU INFORMACIÓN ESTA BIEN PERO SU BLOG ESTA ALGO EXTRAÑO PÓNGALE COLORES LLAMATIVOS POR FAVOR IMAGENES RESUMAN BIEN LA INFORMACIÓN POR FAVOR SE DESPIDE SU COMPAÑERA NIDIA SOTO PARRA DEL 4 SEMESTRE GRUPO C .

    ResponderEliminar
  6. hola compañera, realmente el contenido es bastante y valioso, tal vez el empaque no incite mucho a los lectores, por eso debes hacer tu trabajo mas lucido, esto que ya tienes es muy bueno dale un toque de felicidad, por lo menos de eso.

    Roberto C. 4º B

    ResponderEliminar
  7. Que tal compañero sabes el tema es interesante pero es muy aburrida la teoria sin imagenes es todo de mi parte CLARA RIOS ISIDRO DEL 4º"C".

    ResponderEliminar
  8. Compañero la informacion me parece muy aburrida porque no tiene imagenes aumentale es todo por ahora JUAN CARLOS RODRIGUEZ ROMAN DEL 4º"C".

    ResponderEliminar
  9. Que tal creo que es demasiada teoría lo hace ver muy aburrido y faltan imágenes también tiene faltas de ortografía.
    Su compañero Julio de 4 “c”

    ResponderEliminar
  10. hola, compañera tu información es buena pero la encuentro muy aburrida por que no se me hace muy llamativo por que le falto imagenes, aparte de que el diseño de tu blog es tedioso.

    atte: mariela 4 B

    ResponderEliminar
  11. Hola compañera, tu información es rica en conocimiento para los lectores que visiten este blog, pero debes mejorarlo u hacerlo mas llamativo para que no sea muy aburrido. Se despide tu compañero Pedro Chinchurreta Prieto de 4 B.

    ResponderEliminar
  12. hola tu informacion me parece muy interesantte pero si le agregas imagenes seria mejor
    te saluda nelsy del 4e

    ResponderEliminar

Seguidores